

Molecular Diagnostics

Using DNA and/or RNA to make a diagnosis or provide information for clinical decision making

Sources of DNA and RNA

- DNA
 - Microorganisms
 - Malignancies
 - Genetic testing
- RNA
 - Microorganisms
 - Malignancies

Analytes

How are RNA and DNA Different?

- Ribose vs deoxyribose (RNA has 2' hydroxyl)
- RNA is less stable
- U instead of T
- More often single stranded
- Catalytic properties

Specimens

- Fluids
 - Serum/Plasma
 - = CSF
 - Urine
 - Sputum
 - Others

Specimens

- Cells
 - Blood/Bone Marrow
 - Culture
- Tissue
 - Fresh
 - Frozen
 - Formalin fixed

Difficult Samples

- Urine urea is inhibitory
- Sputum/stool/wounds bacteria may degrade nucleic acids
- CSF little or no nucleic acid normally
- Eye Polysaccharides may inhibit analysis
- Formalin fixed tissue cross linked proteins make retrieval of DNA very difficult

Principles of Isolation

- DNA and RNA often bound by protein
- Components of primary sample may inhibit enzymes
- Enzymes in sample may degrade DNA or RNA
- Quantitatively purify nucleic acids

Extraction of Nucleic Acids

http://www.bio101.com/newsletter/aug

Heparin

From: http://www.facs.org/jacs/graphics/sumpiofig1.gif

DNA Associates with Histones

Special Considerations

- Formalin fixed tissue needs long protease digestion due to cross-linking of histones
- RNA may need to be stabilized if sample is to be stored prior to extraction
- Some specimens may require additional effort to isolate nucleic acids

Automation

- Many systems based on silica chemistry
 - Most use paramagnetic particles coated with silica
 Some use silica filters or columns
- Iron oxide is new chemistry and selective for RNA
 - Naturally paramagnetic
 - Only used in one system

Southern blot

From: http://openlearn.open.ac.uk/file.php/2645/S377_1_007i.jpg

Probe Capture

- Oligonucleotide probes bound to immobile substrate capture specific nucleic acid
- Secondary probe added which is linked to horseradish peroxidase
- Probe binds and excess washed away
- Detection by color change
- Similar to ELISA, may be quantitative

Polymerase Chain Reaction

	Cycle #	Copies of Target
	0	1
Amplification of selected DNA using	1	2
	2	4
a thermostable polymerase.	3	8
Mullic KR at al. "Coocific appropria	4	16
mullis ND et al. Specific effzymatic	5	32
amplification of DNA in vitro, the	6	64
Harbor Symp, Quant, Biol, yol, 51 pp	7	128
262-72 (1096)	8	256
205-73 (1980).	9	512
	10	1024
	16	65536
	17	131072
	18	262144
	19	524288
	20	1048576

Detection of PCR Products

- Can be as simple as measuring DNA content after reaction
- Next simplest is gel electrophoresis with ethidium bromide

Capillary Electrophoresis

Restriction Digest with Gel electrophoresis

- Detect gain or loss of restriction enzyme recognition site
- Requires post PCR processing

Real-time (Q) PCR

- Detection of PCR product during the PCR process
- Typically, optics added to thermocycler to detect fluorescence each cycle
- No need to open tube after PCR closed system
- May use double stranded DNA binding dye or probe

Real-time PCR Product Detection

- Double Strand DNA Binding Dyes
 - SYBR Green
 - Power SYBR
- Probe Based Detection
 - 5'-nuclease detection
 - Molecular beacons
 - FRET Probes
 - Scorpion Probes

SYBR Green I

A minor groove binding dye.

No probe = low reagent cost.

Cannot multiplex.

5' Nuclease Q-PCR (TagMan)

Molecular Beacons

From: http://www.ebiotrade.com/buyf/productsf/qiagen/fig_molecular_beacons.gif

Fluorescent Resonant Energy Transfer

Scorpion Probe (ARMS)

From: http://probes.invitrogen.com/handbook/images/g001360.gif

PCR Math

 $A_n = A_0 (1+e)^n$

Practical consequence is that if sample A takes one more cycle to be detected than sample B, sample A has half as much starting template as sample B.

Transcription Mediated Amplification

Serial Invasive Amplification

Hybrid Capture

Sanger Sequencing

Pyrosequencing

- Pipette nucleotide
- If added, pyrophosphate produced
- Pyrophosphate can participate with luciferase to produce light
- If nucleotide not added, degraded by apyrase

240								
-								
1								
7								
-								
-				-				
					-			
-								
-								
-								
					1 0			
-		1						

Genomics

- Whole genome sequencing easily within reach
- Whole exome sequencing
- Cost/benefit
- Human Genome Project ~\$3B USD
- Now possible to achieve less than \$5K/genome

Arrays

Genomics

- Massively parallel sequencing
- Generally sequencing individual DNA strands (not population sequencing)
- Whole genomes/exomes in very little time
- Short vs long read lengths

Genomic Challenges

- Too much information
- Confidence in the data?
- Archiving the data
- Tumor heterogeneity?
- Reporting
- Unintended Consequences

Summary

- Molecular Diagnostics includes DNA/RNA analysis
- Sample and preanalytic variables are critical
- PCR is the cornerstone technique
- Detection and quantification
- Genomics will change the practice of pathology

Thank you!

- Dr. Rami Mahfouz
- Dr. Najla Fakreddine
- Dr. Greg Tsongalis
- Dr. Angela Caliendo
- Dr. Cindy McCloskey
- Dr. Corinne Fantz