The use of biomarkers in the diagnosis of preinvasive and invasive lesions of the cervix uteri

Dietmar Schmidt MD
Synlab MVZ Pathology Mannheim, Germany
• Cervical cancer is the fourth most common cancer in women
• An estimated 528,000 new cases in 2012
• An estimated 266,000 deaths from cervical cancer worldwide in 2012, accounting for 7.5% of all female cancer deaths
• Almost 87% of cervical cancer deaths occur in underserved regions of the world
4,440 new cervical cancer cases are diagnosed annually in Germany.

Cervical cancer ranks as the 13th cause of female cancer in Germany.

Cervical cancer is the 3rd most common female cancer in women aged 15 to 44 years in Germany.

Reduction of incidence and mortality by 70% since introduction of screening program.
Great success overall, but still problems in:

- Correct evaluation of biopsy specimens
- Secondary prevention
Agenda

- Role of biomarkers in histology
- Role of biomarkers in cytology
Histological Diagnosis - The Challenges

- **Tissue samples difficult to differentiate between normal, low grade and high grade disease:**
 - Scant sample
 - Atrophy
 - Special types of metaplasia
 - High grade mimickers
 - CIN2

- **Resulting in:**
 - High rates of discordance among pathologists
 - Low level of inter- and intra-observer agreement in diagnosing cervical lesions

- **Leading to:**
 - Diagnostic accuracy issues which have substantial impact on appropriate patient management
Diagnosing Cervical Intraepithelial Neoplasia (CIN)

- Subjective procedure
- Histopathologic interpretation of cervical biopsies as HSIL (CIN2 or 3) often leads to excisional or ablative therapeutic intervention
- Accuracy of diagnosis is critical to distinguish between low-grade and high-grade lesions
- Germany: CIN 2 is not regarded as HSIL and therefore is not being treated
Reader Variability

• Morphologic criteria for grading of CIN have been well defined; nevertheless often difficult to apply
• Lack of objectivity
• Various studies indicating substantial variation between readers in the interpretation of CIN
• Kappa coefficients as a measure of agreement among observers corrected by chance typically found in the 0.4 – 0.5 range
Clinical Relevance

- **Risk of overtreatment of False-positive cases**
 - Many low-grade lesions have the potential to spontaneously regress
 - Increasing evidence for regression of a substantial proportion of CIN2 lesions as well
 - Risk of negative impact of ablational therapy on reproductive outcome of women

- **Lack of treatment for False-negatives**
 - Missed high-grade CIN cases may progress to invasive disease
Adjunctive Methods

– To enhance the **diagnostic accuracy** of morphology based interpretation of CIN

– To increase the **diagnostic agreement** between observers
Biomarkers

• p16INK4a
• Ki-67
• Pro-Ex-C
• HPV L1 capsid
• Stathmin-1
• Claudin-1
The p16INK4a Biomarker

- A cellular protein involved in cell-cycle control
- Over-expression of p16INK4a can be used as a biomarker for pre-cancerous and cancerous cervical lesions
 - Surrogate for inactivation of the tumor suppressor protein pRB by high-risk HPV E7 oncoproteins
- Direct link between over-expression of p16INK4a and pathogenetic process of cervical dysplasia
- Measures the carcinogenic activity of human papillomavirus (HPV) at the cellular level
 - Patient age independent
 - HR-HPV type independent
p16 in Histology

Staining pattern

p16 staining in this case is expected to be **Focal** or **Negative**

p16 staining in this case is expected to be **Diffuse** and called **Positive**
No staining

- The rating “**negative**” will be assigned if the p16 stained slide shows no staining reaction
 - Panels A and B represent cervical squamous epithelium tissue specimens
 - Panel C represents an endocervical tissue specimen. Glandular cells are negative for the p16 stain.
P16 negative
Atrophy
CINtec® Histology negative
Focal staining pattern

- Focal staining
 - Either a staining of isolated cells or small cell clusters; i.e. a non-continuous staining, particularly not of the basal and parabasal cells.
 - Slides that stain focal are assigned a “negative” rating

- Endocervical (right panel)
 - Individual cells or small groups of neighboring glandular cells may show p16 immuno-reactivity
Squamous metaplasia; H&E stain
Squamous metaplasia; Focal p16 stain
P16 positive

Diffuse staining pattern

- Diffuse staining
 - A continuous staining of cells of the basal and parabasal cell layers of the cervical squamous epithelium, with or without staining of cells of superficial cell layers.
 - Slides that stain diffuse are assigned a “positive” rating
- Endocervical (right panel)
 - All cells in the gland must stain for p16
CIN 1; Diffuse p16 stain
p16 positivity
Selected literature

<table>
<thead>
<tr>
<th>Author</th>
<th>CIN 1</th>
<th>CIN 2+</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shi et al. 2007</td>
<td>77%</td>
<td>100%</td>
</tr>
<tr>
<td>Badr et al. 2008</td>
<td>35%</td>
<td>93%</td>
</tr>
<tr>
<td>Pinto et al. 2008</td>
<td>ND</td>
<td>84%</td>
</tr>
<tr>
<td>Halloush et al. 2008</td>
<td>92%</td>
<td>100%</td>
</tr>
<tr>
<td>Conesa-Zamora et al. 2009</td>
<td>63%</td>
<td>87%</td>
</tr>
<tr>
<td>Howitt et al. 2013</td>
<td>71%</td>
<td>96%</td>
</tr>
</tbody>
</table>
Small CIN lesion; H&E stain
Small CIN lesion; Diffuse p16 stain
Small CIN lesion (Further magnified); H&E stain
Small CIN lesion; Diffuse p16 stain
Conjunctive $\text{p}16^{\text{INK}4\text{a}}$ Testing Significantly Increases Accuracy in Diagnosing High-Grade Cervical Intraepithelial Neoplasia

Bergeron et al.
American Journal of Clinical Pathology
2010; 133:395-406
Study objectives

- Evaluate the impact of adding p16 to H&E conjunctively in diagnosing high-grade disease in a community-based setting
 - Impact on diagnostic accuracy
 - Impact on level of agreement between community-based pathologists
 - Reliability of p16-staining pattern interpretation

Am J Clin Pathol 2010; 133:395-406
Study design

- “Gold Standard” diagnoses established
 - 500 H&E cases were independently read by 3 expert gynecopathologists
 • Comparable number of punch biopsies and cone biopsies
 - Discrepant results were subjected to adjudication
 - Majority consensus diagnoses were included as final Gold Standard

Am J Clin Pathol 2010; 133:395-406
Study design

- 12 community-based pathologists collectively performed 12,000 readings on Gold Standard slides
 - All 12 independently diagnosed all 500 H&E slides
 - Washout period of at least 4 weeks
 - All 12 established diagnoses on the same set of 500 H&E slides, conjunctively with the matched p16 stained slides
 - All 12 were blinded to case numbers, original diagnoses, and Gold Standard diagnoses
 - Complete data sets for 482 of these 500 cases were available and used in the analysis
Gain in sensitivity for CIN2+:

Adding p16-stained slides to H&E vs. expert consensus

<table>
<thead>
<tr>
<th>Diagnostic Category</th>
<th>Sensitivity HE</th>
<th>Sensitivity HE+p16</th>
<th>Improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>CIN2+</td>
<td>77%</td>
<td>87%</td>
<td>13%</td>
</tr>
<tr>
<td>CIN2 Only</td>
<td>62%</td>
<td>75%</td>
<td>21%</td>
</tr>
<tr>
<td>CIN3 Only</td>
<td>86%</td>
<td>95%</td>
<td>11%</td>
</tr>
</tbody>
</table>

(p=0.0004)

- 30% of all cases were re-classified after reviewing the H&E plus p16 stained slides
- Reduced the rate of false-negative almost in half

Am J Clin Pathol 2010; 133:395-406
Morphology Case Example

Goldstandard: CIN2

Panel H&E only:
8 ≤CIN 1
4 CIN 2+

Panel H&E+ p16:
12 CIN 2+
Morphology Case Example

Goldstandard: CIN2

Panel H&E only:
5 CIN 1
7 CIN 2+

Panel H&E+ p16:
12 CIN 2+
Morphology Case Example

Goldstandard: Negative for CIN

Panel H&E only:
10 ≤CIN 1
2 ≤ CIN 2

Panel H&E+ p16:
12 ≤ CIN 1
Increased inter-observer agreement in diagnosing CIN2+

- A 30% overall increase in inter-observer agreement for diagnosing CIN2+
 - H&E only $\kappa = 0.580$
 - H&E+p16 $\kappa = 0.756$
- Highly statistically significant ($p<0.0001$)
- Same improvement seen for punch biopsies and cone specimens
Reproducibility of p16 immuno-staining interpretation

- High level of reproducibility for rating a p16 immuno-staining pattern:
 - Mean weighted κ value for rating p16 pattern as diffuse, focal or negative = 0.803
 - Mean weighted κ value for rating p16 pattern as either positive (diffuse) or negative (focal/neg) = 0.899
 - Conclusion on reproducibility of rating:
 • Almost 100% consistent in this study
Overall Findings

- Statistically significant increase in Diagnostic Accuracy for diagnosing CIN2+ (p=0.0004)
 - 95% Detection of CIN3
 - Overall 13% Increased Detection of CIN2+
 - Reduced the rate of false-negative results almost in half

- Statistically significant increase in Inter-Observer Agreement for diagnosing CIN2+ (p<0.0001)

- High reliability of p16 Histology stain interpretation
 - Reproducibility of p16 stain interpretation was excellent
Conclusions

- The study has demonstrated that the conjunctive use of p16 stained cervical tissue slides:
 - Significantly increases the diagnostic accuracy for diagnosing CIN2+
 - Significantly increases the Inter-observer agreement for diagnosing CIN2+

- Agreement in rating p16 patterns is very high

- Conjunctive interpretation of p16^{INK4a}-stained slides could significantly improve the routine interpretation of cervical histopathology
p16 Histology data summary

High Sensitivity for CIN2+

<table>
<thead>
<tr>
<th>Studies demonstrate strong data for adjunctive use of ClNtec® Histology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bergeron</td>
</tr>
<tr>
<td>• 500 cervical biopsies (Total of 12,000 interpretations - 12 community-based pathologists)</td>
</tr>
<tr>
<td>• Multinational, multicenter, retrospective diagnostic study</td>
</tr>
<tr>
<td>• Number of high-grade lesions that were missed by H&E alone was reduced by 45%</td>
</tr>
<tr>
<td>Galgano</td>
</tr>
<tr>
<td>• 1455 cervical biopsies</td>
</tr>
<tr>
<td>• US-based retrospective study</td>
</tr>
<tr>
<td>• Comparative analysis of p16 IHC alone vs other markers (Ki-67, HPV L1) vs. in combination</td>
</tr>
<tr>
<td>mtm US clinical trial</td>
</tr>
<tr>
<td>• 1695 cervical biopsies (Total of 62-community-based pathologists)</td>
</tr>
<tr>
<td>• US-based retrospective study</td>
</tr>
<tr>
<td>• Statistically significant improvement in CIN2+ diagnostic sensitivity without loss to specificity</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ClNtec® Histology</th>
<th>Sens of H&E alone</th>
<th>Sens of H&E + ClNtec®</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bergeron</td>
<td>77%</td>
<td>87%</td>
</tr>
<tr>
<td>Galgano</td>
<td>69%</td>
<td>87%*</td>
</tr>
<tr>
<td>mtm registrational trial</td>
<td>86%</td>
<td>91%</td>
</tr>
</tbody>
</table>

*interpretation using ClNtec p16 Histology staining alone
p16INK4a as a Biomarker for CIN 2,3

2012 CAP / LAST guidelines

- p16 IHC is recommended when the differential diagnosis is between CIN 2,3 and a "mimic" such as atrophy, immature metaplasia, reparative change, and tangential cutting

- Whenever a pathologist is considering a diagnosis of CIN2, p16 IHC is recommended

- p16 IHC is recommended whenever there is a professional disagreement as to CIN 2,3

p16^{INK4a} as a Biomarker for CIN 2,3

2012 CAP / LAST guidelines

- p16 IHC is recommended as an adjunct to morphological assessment for biopsy specimens diagnosed as ≤CIN 1 in women with a prior cytological diagnosis of HSIL, ASC-H, AGC(NOS), or ASC-US / HPV 16 (+).

p16 IHC: Detection of Occult CIN Lesions

Int J Gyn Pathol 2009; 28:90-97

Original Article

p16^{INK4a} Immunostaining Identifies Occult CIN Lesions in HPV-positive Women

Jaume Ordí, M.D., Sònia García, M.D., Marta del Pino, M.D., Stefania Landolfi, M.D., Immaculada Alonso, M.D., Llorenç Quintó, M.D., and Aureli Torne, M.D.
Increased Reproducibility in Diagnosing Cervical Lesions by $p16^{INK4a}$ IHC

Consensus diagnosis: no lesion

High-grade lesion detected by $p16^{INK4a}$ IHC
Study Results: Final Diagnosis after Re-evaluation in the Group positive for HR-HPV, negative initial Biopsy

• If there was no diffuse p16 staining, **NPV** for having no CIN 2/3 was found to be **100%**
• If there was diffuse p16 staining, **PPV** for having a CIN 2/3 was found to be **79%**

TABLE 3. $p16^{\text{INk4a}}$ immunostaining categories, final diagnosis after slide review in the group of cases for HR-HPV but with negative initial biopsy

<table>
<thead>
<tr>
<th>$p16^{\text{INk4a}}$</th>
<th>Biopsy final evaluation</th>
</tr>
</thead>
</table>
| | n | No lesion (n=107) | CIN1 (n=13) | CIN2/3 (n=19) | p
| Negative | 105 | 103 (98%) | 2 (2%) | 0 (0%) | <0.001
| Focal | 10 | 4 (40%) | 6 (60%) | 0 (0%) | <0.001
| Diffuse | 24 | 0 (0%) | 5 (21%) | 19 (79%) | <0.001

Clinical utility of p16

Summary

- Histology
 - Significant increase in overall accuracy diagnosing CIN2+/CIN3+ lesions
 - Detection of occult lesions
 - Significant increase in inter-observer agreement
 - Prognostic utility in CIN1
 - Recommendation is for routine use with H&E

- Bergeron et al. American Journal of Clinical Pathology, 2010
- Galgano et al. American Journal of Surgical Pathology, 2010
- Dijkstra et al. Journal of Clinical Pathology, 2010
Incidence of cervical cancer

Marquardt et al., 2011
Cervical cancer screening

Opportunities to improve patient management

| Primary screening | • Cytology has low sensitivity (50-70%) and poor interobserver reproducibility
|• HPV has high false positive rate with women <30 |
|---|---|
| ASC-US triage | • Current algorithms vary – repeat cytology / colposcopy / HPV
|• Repeat cytology increases patient anxiety
|• Colposcopy is invasive and has false positives |
| LSIL triage | • Current standard of care is colposcopy, which is invasive and expensive
|• No standard triage test exists |
| Triage of HPV+ | • Opportunity to decrease unnecessary colposcopies
|• No standard triage test exists |
| Adjunct (Pap - / HPV +) | • Current standard of care is repeat cytology
|• No standard triage test exists |
CINtec PLUS Cytology

p16/Ki-67 cocktail & dual color detection packaged together

- Detection of the co-localization of p16 and Ki-67
- Indicator of presence of cell cycle deregulation, independent of morphology
- Expression of anti-proliferative p16 protein and proliferation marker Ki-67 should be mutually exclusive

Single p16 Single Ki-67

Dual stained cells
CINtec PLUS Cytology data summary

High Sensitivity PLUS High Specificity for CIN2+

Pan-European trials demonstrate strong clinical data

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PALMS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Primary screening, ASC-US, LSIL Marker Study</td>
</tr>
<tr>
<td></td>
<td>27,000 women</td>
</tr>
<tr>
<td></td>
<td>Multinational, multicenter, prospective diagnostic study</td>
</tr>
<tr>
<td>EEMAPS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>European Equivocal or Mildly Abnormal Pap Cytology Study</td>
</tr>
<tr>
<td></td>
<td>Over 200 cases of biopsy confirmed high-grade disease from a total of 777 cases of ASC-US and LSIL</td>
</tr>
<tr>
<td>Wolfburg</td>
<td></td>
</tr>
<tr>
<td></td>
<td>The Wolfsburg Pap/HPV Co-Testing Study</td>
</tr>
<tr>
<td></td>
<td>Over 4,400 women aged 30 and older</td>
</tr>
</tbody>
</table>

CINtec PLUS Cytology

<table>
<thead>
<tr>
<th></th>
<th>Sensitivity</th>
<th>Specificity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening</td>
<td>90 - 93%</td>
<td>95 - 97.5%</td>
</tr>
<tr>
<td>LSIL triage</td>
<td>85 - 94%</td>
<td>54 - 68%</td>
</tr>
<tr>
<td>ASCUS triage</td>
<td>92 – 94%</td>
<td>78 – 81%</td>
</tr>
<tr>
<td>Pap negative / HR-HPV positive triage</td>
<td>92%</td>
<td>85%</td>
</tr>
</tbody>
</table>
Summary: Clinical validation data, ASC-US triage CINtec PLUS Cytology vs. HPV for ≥CIN2

Sensitivity

<table>
<thead>
<tr>
<th></th>
<th>Dual stain</th>
<th>HPV</th>
<th></th>
<th>Dual stain</th>
<th>HPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>PALMS</td>
<td>94%</td>
<td>100%</td>
<td>EEMAPS</td>
<td>92%</td>
<td>91%</td>
</tr>
<tr>
<td>* NCI</td>
<td>82%</td>
<td>97%</td>
<td>Hawaii</td>
<td>94%</td>
<td>91%</td>
</tr>
</tbody>
</table>

Specificity

<table>
<thead>
<tr>
<th></th>
<th>Dual stain</th>
<th>HPV</th>
<th></th>
<th>Dual stain</th>
<th>HPV</th>
</tr>
</thead>
<tbody>
<tr>
<td>PALMS</td>
<td>78%</td>
<td></td>
<td>EEMAPS</td>
<td>81%</td>
<td></td>
</tr>
<tr>
<td>* NCI</td>
<td>82%</td>
<td></td>
<td>Hawaii</td>
<td>62%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>61%</td>
<td>36%</td>
<td></td>
<td>62%</td>
<td>15%</td>
</tr>
</tbody>
</table>

Summary: Clinical validation data, LSIL triage CINtec PLUS Cytology vs. HPV for ≥CIN2

Sensitivity

- PALMS: 86% Dual stain, 98% HPV
- EEMAPS: 94% Dual stain, 96% HPV
- * NCI: 87% Dual stain, 92% HPV
- ** Danish: 89% Dual stain, 92% HPV

Specificity

- PALMS: 54% Dual stain, 19% HPV
- EEMAPS: 68% Dual stain, 19% HPV
- * NCI: 58% Dual stain, 35% HPV
- ** Danish: 51% Dual stain, 36% HPV

** Waldstrom et al; Cancer Cytopathology 2012
Summary: Clinical validation data, LSIL triage
CINtec PLUS Cytology vs. HPV for ≥CIN3

Sensitivity

<table>
<thead>
<tr>
<th></th>
<th>PALMS</th>
<th>EEMAPS</th>
<th>* NCI</th>
<th>** Danish</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>88%</td>
<td>96%</td>
<td>95%</td>
<td>96%</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>96%</td>
<td>95%</td>
<td>96%</td>
</tr>
</tbody>
</table>

Specificity

<table>
<thead>
<tr>
<th></th>
<th>PALMS</th>
<th>EEMAPS</th>
<th>* NCI</th>
<th>** Danish</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>49%</td>
<td>47%</td>
<td>45%</td>
<td>48%</td>
</tr>
<tr>
<td></td>
<td>17%</td>
<td>16%</td>
<td>27%</td>
<td>34%</td>
</tr>
</tbody>
</table>

** Waldstrom et al; Cancer Cytopathology 2012
Clinical validation data, NILM/HPV(+) triage CINtec PLUS Cytology performance, women ≥30

<table>
<thead>
<tr>
<th></th>
<th>Petry et al. 2011</th>
<th>PALMS Sub-analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dual stain positivity rate</td>
<td>108/425 (25%)</td>
<td>225/1,023 (22%)</td>
</tr>
<tr>
<td>Sensitivity for CIN2+</td>
<td>92%</td>
<td>82%</td>
</tr>
<tr>
<td>Specificity for CIN2+</td>
<td>82%</td>
<td>79%</td>
</tr>
</tbody>
</table>
p16\(^{INK4a}\)/Ki-67 dual stain cytology for cervical cancer screening in Thika district, Kenya

Caroline Wangari Ngugi\(^1\), Dietmar Schmidt\(^2\), Karanja Wanyoro\(^3,4\), Hamadi Boga\(^4\), Peter Wanzala\(^5\), Anne Muigai\(^4\), John Mbithi\(^6\), Magnus von Knebel Doeberitz\(^7\) and Miriam Reuschenbach\(^7\)

Table 2 Agreement between VIA/VILI, HPV results and p16\(^{INK4a}\)/Ki-67 cytology. Shown are absolute numbers of positive and negative samples for the three tests

<table>
<thead>
<tr>
<th></th>
<th>p16(^{INK4a})/Ki-67</th>
<th>VIA/VILI</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Negative</td>
<td>Positive</td>
</tr>
<tr>
<td>HPV DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>373</td>
<td>4</td>
</tr>
<tr>
<td>Positive</td>
<td>65</td>
<td>35</td>
</tr>
<tr>
<td>VIA/VILI</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negative</td>
<td>425</td>
<td>37</td>
</tr>
<tr>
<td>Positive</td>
<td>13</td>
<td>2</td>
</tr>
</tbody>
</table>
Summary: Clinical validation data
CINtec PLUS Cytology in triaging ASC-US/LSIL, NILM/HPV(+) and screening

- Similar to somewhat lower sensitivity for CIN2+ as compared to HPV testing in ASC-US & LSIL triage
 - Comparable sensitivity at CIN3+ threshold
 - NCI study; all HPV16 associated HGCIN identified in colposcopy referral population

- Specificity significantly higher in triaging ASC-US and LSIL

- High sensitivity & high specificity in triaging NILM/HPV(+) cases
 - Majority of disease within the group of 20-25% of NILM/HPV(+) women that is Dual stain(+)

- Opportunity for screening, especially in younger women
 - Significant higher sensitivity than Pap, with specificity unchanged
Thank you for your attention