Salivary gland neoplasms: an update

29th Annual Meeting of Arab Division of the International Academy of Pathology
MUSCAT, OMAN 2017

Dr Mary Toner
Consultant Pathologist
St James Hospital
Trinity College Dublin
Dublin Dental University Hospital
WHO Blue Book 2017: salivary gland

• Some non neoplastic entities included
• Expanded molecular pathogenesis
• Newly defined entities: e.g. secretory carcinoma, polymorphous adenocarcinoma
New entities: Secretory Carcinoma
Mammary analogue secretory carcinoma

- First recognised as tumour similar to secretory carcinoma of breast
- Defined by specific molecular finding of balanced chromosomal translocation t(12;15)(p13;q25) – identical to secretory carcinoma of breast
Secretory carcinoma

- balanced chromosomal translocation \(t(12,15)(p13:q25) \)
- results in formation of \(ETV6-NTRK3 \) fusion gene
 - (Also seen in infantile fibrosarcoma and others)
 - Detected either by break-apart \(ETV6 \) FISH probe or RT-PCR for the fusion transcript
Variable fusion partners described

• Rather than *ETV6-NTRK3* fusion – there may be others e.g. *ETV6-Xgene* fusion

• *Morphology may tend to be different* - more *infiltrative growth and sclerotic stroma*
Secretory carcinoma

- Adults, wide age range mean 47y
- Male predominance
- Parotid > minor glands > submandibular gland
- Defined in molecular terms
- Characteristic morphology
- About 250 cases reported
Secretory carcinoma

- Often lobules with thin septae
- Tubular, solid, microcystic, follicular or papillary growth patterns
- Fibrotic stroma less common
- Cystic – less common
Secretory carcinoma

- Low grade vesicular nuclei
- Foamy/ granular/ vacuolated cytoplasm
- “Bubbly” secretions
- Atypia and mitoses rare
Secretory carcinoma *versus* acinic cell carcinoma

Secretory carcinoma
- Multiple growth patterns
- Papillary cystic
- More solid and bubbly
- Multivacuolated cytoplasm
- Luminal and cytoplasmic mucin
 - DPAS+ globules
- No basophilic granules
- Diffuse S100, mammaglobin positive
- DOG1 negative

Acinic cell carcinoma
- Multiple growth patterns, rarely papillary
- Papillary cystic less likely
- DPAS: granular cytoplasmic positivity
- May have basophilic granules
- S100, mammaglobin negative
- DOG1 positive (intense apical membranous and variable cytoplasmic)
Acinic cell carcinoma (zymogen rich)
DOG 1 in acinic cell carcinoma
Secretory carcinoma

Mammaglobin

HE
Mammaglobin

- Polymorphous low grade adenocarcinoma: 60% may have S100 and mammaglobin positivity
- Adenoid cystic: 13% mammaglobin positive
- Low grade salivary duct adenocarcinoma
- Salivary duct carcinoma
Secretory carcinoma: differential

• Low grade ductal adenocarcinoma/cystadenocarcinoma:
 - *S100* and *mammaglobin* diffusely positive
 - Intraductal micropapillary or cribriform
 - usually *p63* positive myoepithelial layer help to distinguish

• Mucoepidermoid carcinoma: *S100* and *mammaglobin* usually negative
Secretory carcinoma: Prognosis

- Usually indolent behaviour but may result in locoregional recurrence and metastasis
- Up to 25% nodal metastases described
- Prognosis: depends on stage
- High grade transformation has been described
- Due to nature of fusion: TRK inhibitors may have a role
Acinic cell carcinoma (after SC)

- >50% of zymogen granule poor acinic cell carcinomas are secretory carcinomas
- Secretory M:F ratio 8:2
- Acinic M:F ratio 1:1.5
Secretory carcinoma in thyroid

- Recently 6 cases from 2 centres
- Morphologically like salivary counterpart
- Nodal metastases/ high stage
- S100 and mammaglobin positive
- ETV6 rearrangement confirmed by FISH
- Negative for thyroglobulin and TTF-1
- ETV6-NTRK3 rearrangement also described in radiation associated thyroid PTC
- PAX8 was positive focally

- Probably true thyroid origin
New entity: polymorphous adenocarcinoma
Polymorphous adenocarcinoma

• New nomenclature 2017 – *probably most contentious area*
• Includes cases previously called
 • **polymorphous low grade adenocarcinoma** and
 • **cribriform adenocarcinoma of tongue (CAT)/ cribriform adenocarcinoma of minor salivary glands (CAMSG)**
• “Low grade” was dropped due to aggressive behaviour of some tumours, tumours with not so low grade appearance
• **CAMSG** - emerging entity, may be recognised as an entity in the future
PLGA and CAMSG - ? distinct entities or variants on a spectrum

<table>
<thead>
<tr>
<th>Cribiform adenocarcinoma</th>
<th>PLGA</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Base of tongue predominates</td>
<td>• Palate, buccal mucosa predominate</td>
</tr>
<tr>
<td>• Papillary/ glomeruloid structures</td>
<td>• Streaming columns of cells, concentric whorls, tubular, solid papillary and cribriform</td>
</tr>
<tr>
<td>• Also cribriform, tubular, solid</td>
<td>• Pale vesicular nuclei</td>
</tr>
<tr>
<td>• Optically clear/ ground glass nuclei</td>
<td>• PNI</td>
</tr>
<tr>
<td>• Propensity for LVI</td>
<td>• Rearrangements of PRKD1-3 in 10%</td>
</tr>
<tr>
<td>• Rearrangements of PRKD1-3 in 80%</td>
<td>• PRKD1 E710D mutations 80%</td>
</tr>
<tr>
<td>• PRKD1 E710D mutations 10%</td>
<td>• Nodal metastasis rare</td>
</tr>
<tr>
<td>• Early nodal metastasis common</td>
<td></td>
</tr>
</tbody>
</table>
Historically - polymorphous low grade adenocarcinoma

- Described in 1984
- Infiltrative growth
- Overlap with features of adenoid cystic carcinoma – but much better prognosis
- Local recurrence 10-33%
- Distant metastases and death from disease rare
• PLGA

• Adenoid cystic carcinoma
PLGA

• But......
• historical difficulty over inclusion or exclusion of cases with prominent papillary growth pattern
• Some felt the papillary ones would be better categorised as adenocarcinoma, NOS
• associated with worse prognosis than PLGA without papillary growth
• Also cases with necrosis, higher grade areas
• Suggested since 2002 that low grade should be dropped
Cribriform adenocarcinoma of minor salivary gland

- Originally described as cribriform adenocarcinoma of the tongue (CAT) usually base of tongue
- Later expanded as seen in other sites – CAMSG (minor salivary gland)
- Some base of tongue tumours were more papillary and more aggressive

- Growth pattern is mostly papillary/ glomeruloid despite the name
microcystic /cribriform
Infiltrative growth
CAMSG – papillary with PTC like nuclei
WHO 2017
Polymorphous adenocarcinoma

- Submucosal, unencapsulated, infiltrative
- Small bland cells
- Minimal hyperchromatism, many with pale washed out nuclei
- PNI common
- Mitoses uncommon, no necrosis
- Variability within and between tumours characteristic: lobular, trabecular, microcystic, cribriform, solid, papillary /cystic
- S100 often diffusely positive
- Do not have a prominent basal or myoepithelial phenotype although p63 seen (but not in biphasic pattern as in adenoid cystic)
<table>
<thead>
<tr>
<th>Polymorphous adenocarcinoma</th>
<th>Adenoid cystic</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Pale vesicular nuclei</td>
<td>• Hyperchromatic angulated nuclei</td>
</tr>
<tr>
<td>• Multiple growth patterns, focally cribriform</td>
<td>• Glandular / tubular, cribriform, solid</td>
</tr>
<tr>
<td>• Monotypic cells</td>
<td>• Biphasic pattern usually seen, inner cells CD117 +</td>
</tr>
<tr>
<td>• PNI with perineural whorling at periphery</td>
<td>• PNI, often larger nerves</td>
</tr>
<tr>
<td>• MIB 1 <10%</td>
<td>• MIB1 > 10%</td>
</tr>
<tr>
<td>• P63+p40-</td>
<td>• P63+p40+</td>
</tr>
<tr>
<td></td>
<td>• MYB-NFIB fusion in 80%</td>
</tr>
</tbody>
</table>
Tumour upper lip 35 year old female
Tumour of upper lip
Mitoses, microcystic pattern
Polymorphous adenocarcinoma
(CAMSG type)
Small left lateral tongue tumour
Diagnosis: Metastatic adenocarcinoma from the oesophagus mimicking primary
Adenoid cystic carcinoma – 2017
Adenoid cystic carcinoma

- 5 yr survival 90%
- 15 yr survival <70%
- Growth pattern and stage important
- Solid growth pattern > 30% - worse outcome
Adenoid cystic carcinoma: molecular

- t (6;9) translocation that joins the MYB (chros 6) and NFIB (chros 9) transcription factors into fusion gene product
- 80% of adenoid cystic carcinomas, not in HGT
 - 6q22-23 translocations MYB fusion/activation 89%
 - 8q13 translocations MYBLI fusion/activation 10%
 - NOTCH1 mutation 5-10%
- MYB antibody also available but not specific for diagnosis of ACC
Clear cell carcinoma

• Previously: clear cell carcinoma, NOS
• hyalinising clear cell carcinoma

• *EWSR1*-*ATF1* fusion recently identified
• 85-90% of tumours
Clear cell carcinoma

• Rare low grade minor salivary gland carcinoma
• Lack of myoepithelial differentiation
• Until recently a diagnosis of exclusion

• Distinction from clear cell mucoepidermoid carcinoma, clear cell odontogenic carcinoma was not always possible
Clear cell carcinoma

- Palate, tongue base, tongue
- Appear clinically and grossly circumscribed but infiltrative on histology
- Growth pattern: small nests, cords, thin trabeculae, single cells
- Pale, uniform eosinophilic or clear cytoplasm
- Desmoplastic response most often in centre of tumour
- Infiltrative edge and can have pagetoid surface involvement
- PNI and intraneural involvement common
“Clear cell carcinoma”

- Foci of squamous differentiation may be seen
- Origin from surface epithelium can be seen
- No duct formation
- Diffuse p63
- EM: features suggesting squamous differentiation
- At least not an adenocarcinoma
- Weinreb 2013
Clear cell carcinoma: molecular

- *EWSR1-ATF1* fusion recently identified (85-90%)
- Also present in clear cell odontogenic carcinoma but not other clear cell mimics
- *EWSR1* gene rearrangements are present in soft tissue myoepithelial tumours but fusions are distinct from salivary counterparts
Salivary duct carcinoma

- Papillary cribriform tumour with comedo necrosis, apocrine appearance
- High grade
- **ER PR** negative
- Androgen positivity discovered inadvertently (90%)
- Some PSA positive
- High grade carcinoma that is AR negative, non apocrine – probably another type of carcinoma e.g. HGT of another type, SCC
Salivary duct carcinoma: androgen receptor positive
androgen deprivation therapy under investigation
Salivary duct carcinoma:
Her2 antibody (approximately 15%)
Intraductal carcinoma

- Intraductal carcinoma
 (low grade salivary duct adenocarcinoma/ low grade cribriform cystadenocarcinoma)
- Outer myoepithelial layer should be identifiable
Salivary duct carcinoma vs intraductal carcinoma

Salivary duct carcinoma
- High grade, invasive
- AR positive
- S100 negative
- SOX10 negative
- P63, p40 negative

Intraductal carcinoma
- Low grade, intraductal
- AR negative
- S100 positive
- SOX10 positive
- P63, p40 highlights intraductal component
Mucoepidermoid carcinoma
Grading in mucoepidermoid carcinoma

- AFIP: Goode/Auclair/Ellis 1998
- Brandwein: modification of AFIP score 2001
- Modified Healey (MD Anderson) 2009
- Katabi/MSKCC 2014

- Low grade: local excision
- High grade: excision, neck dissection +/- radiotherapy
Quantitative grading systems

AFIP
- Intracystic <20% +2
- Neural invasion +2
- Mitoses >4/10 hpf +3
- Necrosis +3
- Anaplasia +4
- Low 0-4
- Intermediate 5-6
- High >7

Brandwein
- Intracystic <25% +2
- Neural invasion +2
- Mitoses >4/10 hpf +3
- Necrosis +3
- Nuclear atypia +3
- *Invades in small nests* +2
- Vascular invasion +3
- Bone invasion +3
- Low 0
- Intermediate 2-3
- High >4
Qualitative systems

Modified Healey
- **LG**: macrocysts, minimal pleomorphism, circumscribed invasive edge
- **IG**: fewer microcysts, non macrocysts, more solid, mild – moderate pleomorphism
- **HG**: solid, no macrocysts, easily found mitoses, cytologically high grade

MSKCC
- **LG**: cystic, circumscribed, 0-mitoses1/10 hpf, no necrosis
- **IG**: mostly solid, circumscribed or infiltrative mitoses<4/10hpf, non necrosis
- **HG**: mitoses >4/10 hpf, necrosis present
Katabi (MSKCC)

• Compared grading systems with outcome
• Lack of consensus among grading systems
• AFIP more likely to downgrade, Brandwein more likely to upgrade (e.g. bone invasion)
• Modified Healey: descriptors too ambiguous
• Suggest MSKCC criteria are relatively more objective
• High grade mucoepidermoid carcinoma is rare
• All scoring systems correlate with DSS and RFS
• No difference in outcome for low grade and intermediate grade (no matter which scoring system is used)
Mucoepidermoid carcinoma: unique translocation

- t(11;19)(q21;p13) results in MECT1-MAML2 fusion
- only seen in mucoepidermoid, but also at other sites e.g. lung
- useful in diagnosis
- >50% tumours show fusion
- Initially - fusion positive associated with better prognosis
- Associated with low/intermediate grade tumours only
- Later fusion positive high grade carcinomas identified
Mucoepidermoid carcinoma

- Jee et al: genome wide copy number alterations study subdivide MEC into 3 groups
 - Low grade, fusion positive, few genomic imbalances: favourable prognosis
 - High grade, fusion positive, multiple genomic imbalances: unfavourable prognosis

Genomic profiles and CRTC1-MAML2 fusion distinguish different subtypes of mucoepidermoid carcinoma.

Carcinoma ex pleomorphic adenoma

- About 12% (7-27%) of all salivary carcinomas
- Often change in pre existing mass
- Grossly sclerotic nodule (pre existing PA) within infiltrative tumour
Carcinoma ex pleomorphic adenoma

• 1 -Must identify the subtype of carcinoma
• Many are salivary duct carcinoma but also less aggressive subtypes
Carcinoma ex pleomorphic adenoma

- **2- identify extent**

- **Intracapsular**: abnormal proliferation within/ between ducts in PA, capsule not breached

- **Minimally invasive**: breach of capsule by carcinoma, measurable in mm

- Unclear what cut off is associated with good prognosis - *previously 1.5mm but possibly 4-6mm*

- **Widely invasive**: extensive invasion outside capsule, may be hard to find PA
Carcinoma ex pleomorphic adenoma
58 year old male FNA “neck mass”

• Poorly differentiated carcinoma
• p16 antibody positive
• “No primary”

• Treated as p16 positive metastatic squamous carcinoma with unknown primary
Metastasising pleomorphic adenoma

- Histologically identical to PA but metastases: regional or distant
- Arises after multiple recurrences
- Spreads to lung and bone
- 40% die of disease
- Previously under malignant category – now under benign
- *Still considered biologically aggressive*

Seethala RR¹, Stenman G².
Summary

• Secretory carcinoma
• Polymorphous adenocarcinoma (combined PLGA and CAMSG)
• More definition required in carcinoma ex PA
• Increasing molecular signatures: secretory, adenoid cystic, mucoepidermoid, clear cell carcinoma
• Grading in mucoepidermoid remains a problem
Mammary analog secretory carcinoma, low-grade salivary duct carcinoma, and mimickers: a comparative study.

Stevens T1, Khoury A1, Vega G1, Sirkin G1, Da G1, Green RS2, Bail W1, Wei S3, Ament PA3, Semanwani A3, Beattie ML1, Brandwein-Gensler M3

Mammaglobin and S-100 immunoreactivity in salivary gland carcinomas other than mammary analogue secretory carcinoma.

Patel KY1, Solomon IH, El-Naggar AK, Lewis JS Jr, Chernock RD

Hyalinizing clear cell carcinoma of salivary gland: a review and update.

Weinstein J1

Prognostic features in mucoepidermoid carcinoma of major salivary glands with emphasis on tumour histologic grading.

Katahi N1, Ghosein R, Ali S, Dogan S, Klimstra D, Ganly I

Diagnostic difficulties in lesions of the minor salivary glands

Khurram, Syed A. et al.
Diagnostic Histopathology, Volume 23, Issue 6, 250 - 259

DOG1: a novel marker of salivary acinar and intercalated duct differentiation.

Seethala RR¹, Stenman O²

Predictors of Outcome in the Phenotypic Spectrum of Polymorphous Low-grade Adenocarcinoma (PLGA) and Cribriform Adenocarcinoma of Salivary Gland (CAGS): A Retrospective Study of 69 Patients.

Xu B¹, Anjia A, Ghossein R, Katabi N

Newly Described Entities in Salivary Gland Pathology.

Skálová A¹, Gnann DR, Lewis JS Jr, Hunt JL, Bishop JA, Hellquist H, Rinaldo A, Vander Poorten V, Farlito A

Salivary duct carcinoma: the predominance of apocrine morphology, prevalence of histologic variants, and androgen receptor expression.

Williams L¹, Thompson LD, Seethala RR, Warnke R, Assaad AM, Tiu R, Ud Din N, Pugina B, Lat C, Griffith C2, Chosa S1

Genomic profiles and CRTC1-MAML2 fusion distinguish different subtypes of mucopeidermoid carcinoma.

Seethala R, Hornick J Surgical Pathology Clinics Head and Neck Pathology March 2017 Vol10 no1